Noviembre

Martes  18 de Noviembre,  sala 2-3, IMA de la PUCV, 15:40-16:40

Expositor: Pierre Gillibert (PUCV)

Título:  Kuratowski’s characterisation of the Aleph

Resumen: I shall investigate an infinite combinatorial statement given by Kuratowski to characterize (small) infinite cardinals. After some historical background that give insight, and yeld to this statement, I shall show relations with some undecidable statements and talk about generalisations.

Martes  4 de Noviembre,  sala 2-3, IMA de la PUCV, 15:40-17:00

Expositor: Gabriele Ranieri (PUCV)

Título:  “On the local-global divisibility principle over elliptic
curves and GL_2-type varieties “

Resumen:   Let $k$  be a number field and let $\mathcal{A}$ be a
commutative algebraic group defined over $ k $. Consider the following
question:

Problem. Let $P \in \mathcal{A} ( k )$ and let $q$ be a positive
integer. Suppose that for all but finitely many places $v$ of $k$,
there exists $D_v \in \mathcal{A} ( k_v )$ such that $P = q D_v$. Does
there exist $D \in \mathcal{A} ( k )$ such that $P = qD$?

This problem is called Local-global divisibility problem by $q$ on
$\mathcal{A} ( k )$.

Dvornicich and Zannier gave a cohomological interpretation of the
Local-global divisibility problem.
By using this interpretation, in two joint works with Laura Paladino
(University of Calabria) and Evelina Viada (University of Goettingen),
we studied the problem in the case when $\mathcal{A}$ is an elliptic
curve.
Recently, we have partially extended our results on elliptic curves to
the more general family of $ GL_2$-type varieties.

We give an idea of the proof of our results and we explain some other
possible generalizations.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: